
LibPressio

Robert Underwood – Clemson University

2

LibPressio – Generic Abstraction for Compression

• Problem: Every library has its own API
– Harder to learn and use

– Requires rewrite to use new compressors

– Limited collaboration and comparison

• Solution: One C/C++ API for all compressors

• Who: Application Users and Compression Developers

• Features:
– Supports many compressors

• SZ, ZFP, MGARD, FPZIP

• Also: Images (i.e. JPEG, WEBP), Lossless (BLOSC)

– Safe, Consistent, Simple, Introspectable, Fully Documented

– Tooling Interface for Analysis

3

LibPressio – Getting Started

– Easy to Install/Use (Spack, Container, Cmake)

– Extensible with:
• Compressors – Writing a Compressor Plugin

• Tooling Modules – Writing a Metrics Plugin

– A simple, consistent workflow
• Get a reference to a compressor

• Configure and assign options

• Describe input and output buffers

• Compress

• Decompress

• Release Resources

– Resources
• Watch the "LibPressio Tutorial" on YouTube

• Reference the extensive developer documentation

https://robertu94.github.io/libpressio/writingacompressor.html
https://robertu94.github.io/libpressio/writingametric.html
https://youtu.be/RbxxLdp_p_s
https://robertu94.github.io/libpressio/

4

LibPressio – Progress and Direction

• Since last year:

 Several new and improved compressor plugins

 Better integration with IO libraries

 Improved metrics and metrics execution plugins

 Significant improvements to language bindings

• Current Uses:
– Language Bindings (Bash, Python, Julia, R, Rust)

– FRaZ/Opt – Autotuning Frameworks for EBLC

– Z-Checker – Error Analysis Framework

– Fault Injection Workflow

– Distributed Compression Benchmarking

– And many other research workflows!

5

LibPressioOpt – Why is this difficult?

• What: Tune compressors using user’s metrics

• Why is this needed:
– Users need lossy compression:

• to reduce storage footprint

• to achieve “best fit” compression

• to manage streaming volume

– Users care how their analysis are affected

– Many user metrics are hard to bound analytically

– Sometimes we can improve over analytical
methods

• Why is this hard?
– The relationships between bounds and metrics

are complex

6

Formulating the Optimization Problem

7

Parallelizing the Algorithm

8

Results: Runtime

9

Results: Quality of Solution

10

Thanks

This research was supported by the
Exascale Computing Project (17-SC-20-
SC),
a joint project of the U.S. Department
of Energy’s Office of Science
and National Nuclear
Security Administration, responsible for
delivering a capable
exascale ecosystem, including software,
applications, and hardware technology,
to support the
nation’s exascale computing
imperative.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

