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Why do we need Fixed Ratio Lossy Compression?

1. To reduce the storage footprint
• The ORNL Summit limit: 50 TB/project
• Many Scientific codes such as HACC or
CESM produce 100s of TB if not PB of data

2. To achieve ”best fit” compression
• Users want to store as they can in their
available storage

• Without fixed-ratio, they either suffer a loss
in quality or result to trial and error

3. Streaming applications
• Scientific instruments such as the APS and
LCLS-II may generate image data rates
exceeding 250GB/s.

• However, the backing storage is limited to
25GB/s

Hurricane, dataset used in paper
with zoom-in view
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Why is this Difficult? Or Why Can’t We Just Use Binary Search?

• Current compressors don’t implement
fixed-ratio compression or implement
an similar “fixed-rate” mode which isn’t
error bounded (see paper)

• The relationship between error bound
and compression ratio is not
monotonic and non-convex for all
compressors and datasets

• This is especially true of compressors
like SZ which have a dictionary
encoding stage

• White-box approaches (where the
compressor is deeply known) quickly
fall out of date

Non-monotonicity in the Hurricane dataset
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Our Contributions are

• Formulated fixed-ratio compression
as an optimization problem in a way
that converges quickly

• Evaluated several different
optimization algorithms to find one
that works on all of our test cases,
and then modified it to improve
performance for our FRaZ

• Implemented and ran parallel
search to improve the throughput of
the technique

Overview of FRaZ Architecture and
Contributions
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Formulating Fixed Ratio Compression as an Optimization Problem

• Given:
Original Dataset Df,t
Decompressed Dataset D′

f,t
Fixed Compression Parameters θ
Acceptable Compressor Error Bound U
Real compression ratio ρr(Df,t, e, θ)
Target compression ratio ρt(Df,t)
Target compression ratio relative tolerance ε

Let: Compressor Error Bound e
• Minimize over e:
(ρr(Df,t, e, θ)− ρt(Df,t))2 s.t. 0 ≤ e ≤ U
if (ρr(Df,t, e, θ)− ρt(Df,t))2 ≤ ε2ρt(Df,t), terminate

• Many Algorithms preform poorly:
We don’t have a analytic forms for ρr, ρr′, or ρr′′
Numerical derivatives are costly, O(sec)− O(min)
Empirically, ρr often is non-convex many local optima

The Acceptable Region is where we
can early terminate the search
• We choose Dlib’s find_global_min
– Lipschitz Optimization + NEWOUA,
http://blog.dlib.net/2017/12/a-global-
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Parallelizing the Algorithm

1. By Field – embarrassingly parallel
2. By Timestep

• Do first timestep as normal
• Guess next solution is same as last
• If wrong, do full tuning again

3. By Error Bound Range
• Split search range [0,U] into n similarly
sized subranges run an independent
search on each as hardware allows

• a slight overlap (i.e. 10%) improves
performance allowing for sufficient
stationary points in the overlapping region

Worker Algorithm
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Results: Time to Solution

• Runtime depends substantially if the requested
target is feasible:

• Good (feasible) Case: We terminate early
most of the time

• Bad (infeasible) Case: We alternate
between a compression ratio which is too
small or too large

• Very small compression ratios are often infeasible
because there is a minimum compressed size

• There are also gaps between feasible and infeasible.
For this figure ρt(Df,t) ∈ [14, 16] are infeasible for the
specified ε

• In the feasible case, overhead is often ≈ 2x just
compressing with the correct error bound.

Solutions in good/bad case

Time to solution for many targets
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Results: Quality of Solution

• Fixed Ratio SZ/ZFP is
generally better than ZFP
Fixed Rate at each
compression ratio:

• Better Rate Distortion
(higher PSNR per bit rate)

• Higher SSIM
• Higher PSNR
• Better visual quality

• Figure 1: Rate Distortion for
Several Datasets

• Figure 2: Visual Quality for
Several Compressors 1
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Conclusions

• Major Conclusions:
• Fixed Ratio is better than existing Fixed Rate methods at preserving the data
quality for equivalent compression ratios

• Fixed Ratio Compression is higher performance when there are a large number
of feasible compression ratios

• We have relatively low overhead in the feasible case
• Future Work:

• Arbitrary User Error Bounds – bounds that correspond with the quality of a
scientist’s analysis result relative to that on noncompressed data

• Online Version – Develop an online version of this algorithm to provide in situ
fixed-ratio compression for simulation and instrument data.

• Algorithm Improvements – Further improve the convergence rate of our
algorithm to make it applicable for more use cases
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