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Exascale HPC Needs to Process Big Data
+ Exascale Apps

 CESM-LE — 300TB/instance Bebop < 2PB 0.3 PB
- HACC — 2000PB storage Mira 24 PB n/a ~1PB
» Exascale Instruments Theta LLAE G ~1PB

Summit 250PB 2.5TB/s 10PB
Aroura 230PB 25 TB/s 10PB

Projected 500 PB
Exascale

o LCLS-II — >250GB/s steaming

Franck Cappello et al. “Use Cases of Lossy Compression for Floating Point Data in Scientific Datasets”. 2018
Machine Characteristics from respective websites accessed 17 September 2020 3
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Compression is the Solution

Compression represents data in a more compact fashion

Lossless Lossy Error Bounded Lossy
Compression

Examples JPEG SZ/ZFP/MGARD
Compression Ratio ® © ©
Ease of Use © ® 7

Data Integrity © ® ©
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Lossy Compression Is Not Approachable

* Too many interfaces

RS . “ Dlsenatlon.“
* Too difficult to configure (} @
¢ FeW tOO|S tO underSta nd  Standard | onﬁguratlon ( Analysis "
~ Interface Tools - Tools
» My dissertation provides a @

single interface to use,
configure, understand
compression

More Complex Lossy Compressmn‘

‘ LibPressio ‘ FRaZ HlePressm -Opt H Appllcatlons for Al

.| Topic| |Projects | | Proposed Projects
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Outline

Introduction to Compression Principles
LibPressio

Automated Configuration of Compressors
Understanding the Effects of Compression
Conclusions and Future Work

o bk Wi
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Introduction to Error-Bounded
Compression Principles

.

Lake Hartwell — Lossless (left), Lossy (right). The image on the right is 17 times smaller
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* Prediction Based
Compressor
1. Data Prediction
2. Linear Quantization
3. Entropy Encoding
4. Lossless Encoding

"' School of
. Clemson’ University
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Predictor ”“‘%2 A H ZStd ]
Pr030 Linear Huffman  Lossless
Quantization Encoding Encoding

Regression
Predictor
Unpredictable

Di, Sheng and Cappello, Franck “Fast Error Bounded Lossy
Compression with SZ” 2016
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ZFP

* Transform Based (o /;;;;g;;;;;;;x \
Compressor D Pl
1. Partition into grids of 4" N T Y,
2. Convert to fixed point by B e ————

block g N )
3. Near Orthogonal Transform Croodes bitplans gt 10010010700
« Similar to JPEG Compression
\ AN J
4_ B|t manipl,”ati()n Embedded Encoding Truncation

Lindstrom, Peter. “Fixed Rate Compressed
Floating Point Arrays” 2012
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MGARD

» Multi-Grid Method —
1. Determine Multi-grid == Sie S Zib
coefficients

) L . 1’ Convert Nodal to Quantize Lossless
2. Quantize binding Multilevel Coefficients Compress
Coefficients Coefficients

coefficients

3. LOSSleSS|y encode quantlzed Whitney, Ben E. “Multilevel Techniques for

coefficients Compression and Reduction of Scientific Data”
2018
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LibPressio

A Generic Abstraction for the Compression of Dense Tensors
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LibPressio Provides a Common Interface

//get the compressor

. truct iok 1ib = io_inst Q3
¢ C O m m O n A bSt ra Ct | O n S fO r: ztEEZt EzzzziZ_co;piae‘:zor*pZESilgr;zzizl_l;zt_compressor(library,

“SZ“) ;

¢ Loadlng Com pressors //configure, validate, and assign the options
struct pressio_options+* config =
! h — __pressio_compressor_get_options(sz);
¢ CO nflguratlon pressio_options_set_integer(config, "sz:error_bound _mode",
. C . /D p 1 pressio_options_set_double(config, "sz:rel_err_bound", 0.01);
O m p reSS l O n eCO m reSS l O n pressio_compressor_set_options(sz, config); :
® R p t. g D t //read in an input buffer
e resen ln a a size_t dims[] = {500,500,100};
. struct pressio_data* description =
() Error Re portlng . pressio_c.iata_new_gmpty(pressio_float_dtype, 3, dims);
struct pressio_data* input_data =
— pressio_io_data_path_read(description, "CLOUDf48.bin.f32");
[ J

Computing Metrics

//create output buffers

struct pressio_data* compressed_data =

s pressio_data_new_empty(pressio_byte_dtype, 0, NULL);
struct pressio_data* decompressed_data =

— pressio_data_new_owning(pressio_float_dtype, 3, dims);

//compress and decompress the data
pressio_compressor_compress(sz, input_data, compressed_data);
pressio_compressor_decompress(sz, compressed_data,

Get L|bPreSS|O — decompressed_data);

12
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Current Plugins and Tools

Compressors Meta-Compressors Metrics “ Tools

e blosc e linear_quantizer e composite (lua) ® POSIiX e LibPressio-Tools
® imagemagick * many_dependent e error_stat e Csv e LibPressio-Predict
e fpzip % e many_independent e time e hdf5 e LibPressio.jl
* mgard ® resize ®size e select e LibPressio.py ¢¢
°sz N e transpose ® N0-0p e empty e Z-Checker A
o zfp [\ e opt e kl_divergence ¢ ® N0-0p

® N0-0p eks_test

e fault_injector A * pearson

erandom_errors A e spatial_error

e ftk_critical_points &
e external I A <

Bolded plugins developed in collaboration with others .
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Meta Compressors Boost Productivity

* Not a compressor
themselves

* Provide common Services:
* Auto Configuration tools
* Pre/Post Processors
 Parallel Runtimes

#Clemson SC20
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LibPressio Solves Problems

* Writing for multiple Z-Checker Improvements
compressors is hard: over 100 *2
bugs fixed to date "

» Case Study: Z-Checker
« Save over 1000 LoC (=21%)

 Better: °
« Over 10 new compressors

* Over 3 new data formats
 Faster: with MPI parallelism . I
« Future proof: New compressors 0 ]

just need a recompile Before After

B Data Formats Supported ® Compresors Supported ® 1000s LoC

[

N

N
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Future Work on LibPressio

« Support for accelerator
sharing
* GPUs
* Threads
* FPGASs

» Support for
asynchrony/streams

» Support for sparse problems

#Clemson SC20
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Automated Configuration of Compressors

#Clemson SC20
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Automated Configuration Timeline

IPDPS 2020

!

LibPressio-Opt More Complex

Apps
e Bounding ¢ Bounding ¢ Bounding
Compression User Metrics Complex,
Ratio e Performance Multi-faceted
Improvements Metrics
\_ \_ J \_

#ClemsonSC20
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1 - FRaZ: Fixed Ratio Compression

Can we tune compression using a control loop
to bound the compression ratio?

#Clemson SC20
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FRaZ: Approach

Formulate compressor configuration as an optimization problem

I?eal;(Q(df,t' df:t(c; HC) )

#Clemson SC20
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FRaZ: Approach

Formulate compressor configuration as an optimization problem

Compression Ratio

max Q(dy,r, dr(; 6c) )

#Clemson SC20
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FRaZ: Approach

Formulate compressor configuration as an optimization problem

Compression Ratio

max 0(dyc, 47 (& 07) )

Error Bound

22



' ‘ School of
@ % COMPUTING

FRaZ: Approach

Formulate compressor configuration as an optimization problem

Compression Ratio

max 0(dyc, 47 (& 07) )

Error Bound

Allowed Error Bounds

23
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FRaZ: Approach

Formulate compressor configuration as an optimization problem

Compression Ratio

\D:ta for a Field and Timestep

dre, d
I?eag(Q( Jit

(¢ 6,))

Error Bound

Allowed Error Bounds

I Everywhere | mor
e are | than h

School of
Clemson’ University

24
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FRaZ: Approach

Formulate compressor configuration as an optimization problem

Compression Ratio

\D:ta for a Field and Timestep
/ _
0.

dre, d
I?eag(Q( Jit

Compression Function
Error Bound

Allowed Error Bounds

25
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FRaZ: Approach

Formulate compressor configuration as an optimization problem

Compression Ratio

_ _ Error Bound Mode
\D:ta for a Field and Timestep /

I?EagcQ(df,t,d (c; 0, )

Compression Function

Error Bound

Allowed Error Bounds

26
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FRaZ: Approach

* Why not use binary search?
* [t doesn’t work 140

* The relationship between error 190
. . e} 120 .............
bounds and compression ratios g ..
IS not monotonic S 100 128
* What can we use? & 0, RN TN s
o . 8 80 Il T o MR
* Optimization ot "oz g a0,
 Derivative Based Methods 60
- Analytic Derivatives ¢ 0%\0 0’@ 09 0%\ 00" 05’@0 07@ 0‘5“ 0‘5&

) ) ) Error Bounds
 Numerical Derivatives

* Derivative Free Optimization

27
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FRaZ: Approach

* Why not use binary search?
* [t doesn’t work 140

* The relationship between error 190
. . e} 120 .............
bounds and compression ratios g ..
Is not monotonic S 100 128
* What can we use? & 0, RN TN s
. . . 8 80l - oo MM
* Optimization ot "oz g a0,
 Derivative Based Methods 60
——Aralytic-Derivatives— too challenging  ° 00@ z 0,@ % "% % 0%» ’ 07@ % s

) ) ) Error Bounds
 Numerical Derivatives

* Derivative Free Optimization
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FRaZ: Approach

* Why not use binary search?
* [t doesn’t work 140

* The relationship between error 1507
. . e} 120 .............
bounds and compression ratios g .l
Is not monotonic S 100 128
* What can we use? & 0, RN T e
o . 8 80 Il T o MR
* Optimization ot "oz g a0,
 Derivative Based Methods 60
——Aralytic-Derivatives— too challenging  ° 00@ z % % "% % 0%» ’ 07@ % s
N e a-Derivat too slow Error Bounds

* Derivative Free Optimization
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FRaZ: Approach

* Why not use binary search?
* [t doesn’t work 140

» The relationship between error 1507
bounds and compression ratios
IS not monotonic

* \What can we use?

* Optimization
e Derivative Based Methods

N
o
T

— — —
© O =
© © o
T T

Compression Ratio

(00]
o
1

~J
o
I

(o)}
o

00000000000

. . . . o
——Anatytic-Berivatives——— too challenging %) EORAER S N R ORI

Error Bounds

——Numerica-Berivatives— 100 slow

< Derivative Free OptimizatioD

W20

‘we ore | than b
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FRaZ: Key Findings

Sensitivity to the Target Objective

m Total Time Compression Time

 Tuning takes only 2x longer than .
an oracle in the feasible case
1000
« Some targets are faster because
more error bounds meet some g o
targets E 600
* How do we get there? 100
» Parallelize by 200 I I
1. Field —run each field independently II-I II.I-II-II-
2. Timestep — try reusing prior % 2 34567 8 91011121314 151617 1819202122 2324 2526 27 28 29

timesteps configuration Target Compression Ratio (o))

3.  Error Bound Range — run ranges

independently, stopping early if a B B & 0 Ba B
solution is found _’r_Jr—Lr_/L—ll 1\_1\_

......

Adjacent regions overlap PPer bound

31



ols

=

Automated Configuration Timeline

e Bounding
Compression
Ratio

In Submission

!

LibPressio-Opt

\_

¢ Bounding
User Metrics

e Performance
Improvements

J

More Complex

Apps

¢ Bounding
Complex,
Multi-faceted
Metrics

School of
Clemson’ University

32
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2 — LibPressio-Opt: Bound User Metrics

Can we extend FRaZ to bound simple user
metrics and improve performance?




ols

g

LibPressio-Opt: Approach

Formulate compressor configuration as an optimization problem

Compression Ratio

_ _ Error Bound Mode
\D:ta for a Field and Timestep /
/ _

Compression Function

Error Bound

Allowed Error Bounds

I Everywhere | mor
e are | than h

School of
Clemson’ University
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LibPressio-Opt: Approach

Formulate compressor configuration as an optimization problem

Compression Ratio Error Bound Mode

\D:ta for a Field and Timestep /
—\C —
Q ); )

Compression Function

Error Bound

Allowed Error Bounds

I Everywhere | more
e are | than h

School of
Clemson’ University
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LibPressio-Opt: Approach

Formulate compressor configuration as an optimization problem

Compression Ratio Error Bound Mode

\D:ta for a Field and Timestep /
Q — —

Compression Function Fixed Metric Parameters

Error Bound

Allowed Error Bounds

I Everywhere | mor
e are | than h

#ClemsonSC20
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LibPressio-Opt: Approach

Formulate compressor configuration as an optimization problem

User Error Bound Error Bound Mode

\D:ta for a Field and Timestep /
Q — —

Fixed Metric Parameters

Compression Function
Error Bound

Allowed Error Bounds

I Everywhere | more
e are | than h

#ClemsonSC20
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Clemson’ University
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LibPressio-Opt: Approach

Formulate compressor configuration as an optimization problem

User Error Bound Error Bound Mode

\D:ta for a Field and Timestep /
Q — —

Compression Function Fixed Metric Parameters

Non-fixed Compressor Settings

Allowed Error Bounds

I Everywhere | more
e are | than h

#ClemsonSC20
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LibPressio-Opt: Approach

Formulate compressor configuration as an optimization problem

User Error Bound Error Bound Mode

\D:ta for a Field and Timestep /
Q — —

Compression Function Fixed Metric Parameters

Non-fixed Compressor Settings

Feasible Compressor Settings

I Everywhere | mor
e are | than h

#ClemsonSC20

School of
Clemson’ University
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LibPressio-Opt: Approach

Formulate compressor configuration as an optimization problem

User Error Bound Compressor Fixed-Parameters

\D:ta for a Field and Timestep /
Q — —

Compression Function Fixed Metric Parameters

Non-fixed Compressor Settings

Feasible Compressor Settings

40

I Everywhere | mor
e are | than h
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lllustration of Relationship among
Notations

Compression User-analysis
parameter space Q N parameter space N
O
/
Uncompressed data buffer Decompressed
i.e., original raw data data buffer T (=20

Timesteps per Dataset — (To, Fp) «— Fields per Dataset »

#ClemsonSC20
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What about constraints on objectives?
For any, \Qi(df,t: Ci;t((?; 6’_(;) )} and T;

v N

threshold for ith metric

ith metric

We can construct:
Q (df,t» CZ;t(EJ 9_c>)) —

( —_ L, — —_ L —
Qo (df,t» ds (C; 9c)) if Vi, Qi (df,t» ds (C; 9c)) < T
—o00 , otherwise

A

\

#Clemson SC20
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What do we mean by “Metrics”?

* Requirements
« “Sufficiently” Deterministic

* Have a fixed number of Real
valued inputs and outputs

» Can be modeled as having a
single objective

Metrics Types

Real Time Metrics

Application Metrics
Multi-Buffer Metrics

| Single-Buffer |
Metrics

43
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What do we mean by “Metrics”?

* Requirements
« “Sufficiently” Deterministic

* Have a fixed number of Real
valued inputs and outputs

» Can be modeled as having a
single objective

* Types

Metrics Types

Real Time Metrics

Application Metrics
" Multi-Buffer Metrics

| Single-Buffer |
Metrics

Real Time — Can only be computed at
runtime (i.e. compression_time)

44
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What do we mean by “Metrics”?

* Requirements
« “Sufficiently” Deterministic

* Have a fixed number of Real
valued inputs and outputs

» Can be modeled as having a
single objective

* Types

Metrics Types

Real Time Metrics

Application Metrics
" Multi-Buffer Metrics

| Single-Buffer |
Metrics

Application — Needs a specific collection
of buffers to compute (Anything “app”
specific)

45
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What do we mean by “Metrics”?

* Requirements
« “Sufficiently” Deterministic

* Have a fixed number of Real
valued inputs and outputs

» Can be modeled as having a
single objective

* Types

Metrics Types

Real Time Metrics

Application Metrics
" Multi-Buffer Metrics

| Single-Buffer |
Metrics

Multi-Buffer — Can be computed with any
number of buffers (i.e. compression_ratio)

46



' ‘ School of
@ COMPUTING

What do we mean by “Metrics”?

* Requirements
 “Sufficiently” Deterministic

* Have a fixed number of Real
valued inputs and outputs

» Can be modeled as having a
single objective

* Types

Metrics Types

Real Time Metrics

Application Metrics
" Multi-Buffer Metrics

Single-Buffer
Metrics

Multi-Buffer — Can be computed with any
number of buffers (i.e. compression_ratio)

Single-Buffer — Computed from any

single buffer
47
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What do we mean by “Metrics”?

* Requirements
« “Sufficiently” Deterministic

* Have a fixed number of Real
valued inputs and outputs

» Can be modeled as having a
single objective

* Types

Metrics Types

Real Time Metrics

Application Metrics
Multi-Buffer Metrics

Single-Buffer
Metrics

Multi-Buffer — Can be computed with any
number of buffers (i.e. compression_ratio)

Single-Buffer — Computed from any

single buffer
48
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MGARD Quantity of Interest Mode

* Requirements

* Qis a bounded linear functional
o iff: Qlax + By) = aQ(x) + Q)
* ds; represents aregular grid
* This includes many simulations

* Procedure
« Precompute scaling factor Y;s(Q)
» Use bound Ys(Q) [|dye — dre| ¢

* Details in the paper cited below

Ainsworth, Mark; Tugluk, Ozan; Whitney, Ben; Klasky, Scott . "Multilevel techniques for compression
and reduction of scientific data-quantitative control of accuracy in derived quantities. 2019

#ClemsonSC20
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VS. MGARD Quantity of Interest Mode

 Relative to MGARD-QOI
mode

« LibPressio-Opt+SZ is much
faster for one-off tasks

* Even if precomputation is not
required, it can still be faster

#Clemson SC20
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VS. FRaZ

* Relative to FRa/

* Inter-iteration early termination
* Multi-threaded searches

 Embeddable

« Supports user-defined
objectives

« Supports multiple input
parameters

* Extendable Search methods

51
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Automated Configuration Timeline

e Bounding
Compression
Ratio

LibPressio-Opt

\_

¢ Bounding
User Metrics

e Performance
Improvements

J

Current Work

!

More Complex
Apps

¢ Bounding
Complex,
Multi-faceted
Metrics

School of
Clemson’ University
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Car
com
multl

0
0

Acce

We ac

ex, r

e buffers such as Harc
erated Cosmology Coc
power spectrum?

apt LibPressio-Opt to
nulti-faceted met

1CS 1

00

ware/
e (HACC)'s

d

"' School of
‘ Clemson’ University

Und
use

ybrid




." School of
‘ Clemson’ University

Background

100000 ———1— T

» HACC — ECP astrophysics o  Cumsmime

particle application e '
» No compressors bound T ooop
spectral error = 1
0]

2).001. | (I).IO‘I. | IOI.1 | | I1 | | I1I0 |

k[h/Mpc]
Matter Fluctuation Power Spectra from Outer
Rim and Q Continuum simulation at z=0.26. [3]

54
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Approach

1. Implement the spectra as a LibPressio metric of type
vector<double>

2. Explore metrics to compare spectra

3. Solve maximum compression ratio such that differences
between spectra are acceptable

95
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Future Work

* True Multi-Objective Compression
* Improve the search algorithm
» Better Compression task scheduling

56
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Understanding the Effects of Compression on ML/AI

#Clemson SC20
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Lossy Compression for Al

Wha

traini

taret

ng ar

d testli

S

ne trage-o

s for compressing

18 C

ata to save storage

nace?
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Approach

» Use LibPressio External
Metrics on training data to
collect pareto-optimal points
» External Metrics run scripts to
collect data.

* |n this case: here a known-
good Al based model

59
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Key Findings

« Prediction-Based EBLC 0 g v

label
works best (SZ) oy
. b ; NONE NONE
* Even better than sampling! o . CAMPLE NAIVE
* Even on imbalanced datasets! > ° L * SAMPLE WOR
© e SAMPLE WR
o ' ' 3 70 = SZABS
Sometimes EBLC improves ¢ o R
| SZ PW_REL
performance! 60 ¢Sz
- Compress tabular data L * L oo E
' ¢ - ZFP PREC
relatively by feature o 2rp PREC

Compression Ratio

60
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Conclusion

* Error Bounded Lossy Compression has the potential to be
transformative

* Especially with an interface to unify, tools to configure,
and tools to understand

#Clemson SC20
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Thank You!

62
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Thank You!

3 ) U.S. DEPARTMENT OF Offi f i
ENERGY oo WCLEMSON

$% UNIVERSITY

Argon neA

NATIONAL LABORATORY

SIES
/

MO S
. ZATES O

ECP

EXASCALE COMPUTING PROJECT
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Questions?

Approachable Error Bounded
Lossy Compression

Robert Underwood

Clemson University
October 8, 2020
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Papers | Worked On

R. Underwood, S. Di, J. C. Calhoun and F. Cappello, "FRaZ: A Generic High-
Fidelity Fixed-Ratio Lossy Compression Framework for Scientific Floating-point
Data," 2020 (IPDPS)

Jiannan Tian et al. “cuSZ: An Efficient GPU Based Error-Bounded Lossy
Compression Framework for Scientific Data”. In: Proceedings of 29th

International Conference on Parallel Architectures and Compilation Techniques.
Co-Author. ACM. Atlanta, Georgia (virtual), Oct. 2020.

A. Gok et al. “Metrics for the Preservation of the Error In Derivatives” 2020 (In
Preparation)

R. Underwood, S. Di, J. C. Calhoun and F. Cappello, “LibPressio-Opt: Fast User
Error Bounds for Loss Compression” 2020 (In Submission)

R. Underwood et al. “Machine Learning and Al with Error Bounded Lossy
Compression” (In Preparation)
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